Фирмы-разработчики аппаратного обеспечения постоянно совершенствуют внешние устройства и другие узлы персонального компьютера. Постоянно появляются новая периферийная аппаратура и новые модификации уже существующих устройств. Старые устройства наделяются новыми возможностями, новые делают такое, о чем раньше не приходилось и мечтать. И, конечно же, это коснулось устройств накопления информации.
Выпускаемые накопители информации представляют собой гамму запоминающих устройств с различным принципом действия физическими и технически эксплуатационными характеристиками. Основным свойством и назначением накопителей информации является ее хранение и воспроизведение. Запоминающие устройства принято делить на виды и категории в связи с их принципами функционирования, эксплуатационно-техническими, физическими, программными и другими характеристиками. Так, например, по принципам функционирования различают следующие виды устройств: электронные, магнитные, оптические и смешанные – магнитооптические. Каждый тип устройств организован на основе соответствующей технологии хранения/воспроизведения/ записи цифровой информации. Поэтому, в связи с видом и техническим исполнением носителя информации различают: электронные, дисковые и ленточные устройства.
Самым дешевым и наибольшим по емкости является жесткий диск. В настоящее время винчестер имеет объем до 2 Тб.

1. Жесткий диск и принцип его работы

Накопитель на жёстких магнитных дисках, жёсткий диск или винчестер, (англ.HardDiskDrive, HDD) – энергонезависимое, перезаписываемое компьютерное запоминающее устройство. Накопитель на жестком диске относится к наиболее совершенным и сложным устройствам современного персонального компьютера. Его диски способны вместить многие гигабайты информации, передаваемой с большой скоростью.
Жёсткий диск состоит из гермозоны и блока электроники.
Гермозона включает в себя корпус из прочного сплава, собственно диски (пластины) с магнитным покрытием, блок головок с устройством позиционирования, электропривод шпинделя.
Блок головок – пакет рычагов из пружинистой стали (по паре на каждый диск). Одним концом они закреплены на оси рядом с краем диска. На других концах (над дисками) закреплены головки.
Диски (пластины), как правило, изготовлены из металлического сплава, хотя были попытки делать их из пластика и даже стекла, но такие пластины оказались хрупкими и недолговечными. Обе плоскости пластин, подобно магнитофонной ленте, покрыты тончайшей пылью ферромагнетика – окислов железа, марганца и других металлов. Точный состав и технология нанесения держатся в секрете. Большинство бюджетных устройств содержит 1 или 2 пластины, но существуют модели с большим числом пластин.
Диски жёстко закреплены на шпинделе. Во время работы шпиндель вращается со скоростью несколько тысяч оборотов в минуту (4200, 5400, 7200, 10 000, 15 000). При такой скорости вблизи поверхности пластины создаётся мощный воздушный поток, который приподнимает головки и заставляет их парить над поверхностью пластины. Форма головок рассчитывается так, чтобы при работе обеспечить оптимальное расстояние от пластины. Пока диски не разогнались до скорости, необходимой для «взлёта» головок, парковочное устройство удерживает головки в зоне парковки. Это предотвращает повреждение головок и рабочей поверхности пластин.
Устройство позиционирования головок состоит из неподвижной пары сильных, как правило, неодимовых постоянных магнитов и катушки на подвижном блоке головок.
Блок электроники, интерфейсный блок – обеспечивает сопряжение электроники жёсткого диска с остальной системой.
Блок управления представляет собой систему управления, принимающую электрические сигналы позиционирования головок, и вырабатывающую управляющие воздействия приводом типа «звуковая катушка, коммутации информационных потоков с различных головок, управления работой всех остальных узлов (к примеру, управление скоростью вращения шпинделя).
Блок ПЗУ хранит управляющие программы для блоков управления и цифровой обработки сигнала, а также служебную информацию винчестера.
Буферная память сглаживает разницу скоростей интерфейсной части и накопителя (используется быстродействующая статическая память). Увеличение размера буферной памяти в некоторых случаях позволяет увеличить скорость работы накопителя.
Блок цифровой обработки сигнала осуществляет очистку считанного аналогового сигнала и его декодирование (извлечение цифровой информации).
В накопителях на жестких дисках данные записываются и считываются универсальными головками чтения/записи с поверхности вращающихся магнитных дисков, разбитых на дорожки и секторы (512 байт каждый). В накопителях обычно устанавливается несколько дисков, и данные записываются на обеих сторонах каждого из них. В большинстве накопителей есть, по меньшей мере, два или три диска (что позволяет выполнять запись на четырех или шести сторонах), но существуют также устройства, содержащие до 11 и более дисков. Однотипные (одинаково расположенные) дорожки на всех сторонах дисков объединяются в цилиндр. Для каждой стороны диска предусмотрена своя дорожка чтения/записи, но при этом все головки смонтированы на общем стержне, или стойке. Поэтому головки не могут перемещаться независимо друг от друга и двигаются только синхронно.

2. Интерфейс IDE/ATA

ATA (AdvancedTechnologyAttachment) , также называемый IDE (IntegratedDriveElectronics) – стандарт на интерфейс между компьютером (контроллером) и накопителем на жестких магнитных дисках (дисководом, HDD), включая физический уровень (разъёмы, кабели), электрические и логические характеристики сигналов, регистры устройства, команды и протоколы.

2.1 Эволюция интерфейса

Интерфейс ATA – разрабатывался для подключения накопителей на жестких магнитных дисках к компьютерам IBM PC AT с шиной ISA. Интерфейс появился в результате создания устройств со встроенным контроллером – IDE. Контроллер жесткого диска был перенесен на плату электроники накопителя с сохранением регистровой модели.
Из всех сигналов шины ISA выбрали минимальный набор сигналов, часть из которых буферизовали на небольшой плате, устанавливаемой в слот, а часть направили прямо на разъем ленточного кабеля нового интерфейса.
Стандартный контроллер AT позволял подключать до двух накопителей – эту возможность получил и интерфейс ATА. Для взаимодействия пары устройств на шине ввели несколько дополнительных сигналов. Так появился интерфейс ATА для подключения устройств IDE к шине ISA. Позже их стали подключать и к локальным шинам, но набор сигналов интерфейса и протоколы обмена сохранились.
Принятая система команд и регистров, являющаяся частью спецификации ATА, ориентирована на блочный обмен данными с устройствами прямого доступа. Для иных устройств существует спецификация ATAPI, основанная на тех же аппаратных средствах, но позволяющая обмениваться пакетами управляющей информации (PI – PackageInterface).
В спецификации АТА фигурируют следующие компоненты:
    Хост-адаптер – средства сопряжения интерфейса АТА с системной шиной (набор буферных схем между шинами ISA и АТА).
    Кабель-шлейф с двумя или тремя 40-контактными IDC-разъемами. В стандартном кабеле одноименные контакты всех разъемов соединяются вместе.
    Ведущее устройство (Master) – ПУ, в спецификации АТА называемое Device-0.
    Ведомое устройство (Slave) – ПУ, в спецификации называемое Device-1.
О своей роли устройства узнают с помощью предварительно установленных конфигурационных джамперов. Если применяется кабельная выборка, то роль устройства определяется его положением на специальном кабеле-шлейфе.
Оба устройства воспринимают команды от хост-адаптера одновременно. Однако выходные сигналы на шину АТА имеет право выводить только выбранное устройство. Такая система подразумевает, что, начав операцию обмена с одним из устройств, хост-адаптер не может переключиться на обслуживание другого до завершения начатой операции. Параллельно могут работать только устройства IDE, подключаемые к разным шинам (каналам) АТА.
Выполняемая операция и направление обмена данными между устройством и хост- адаптером определяются предварительно записанной командой. Непременным компонентом устройства является буферная память. Ее наличие позволяет выполнять обмен данными в темпе, предлагаемом хост-адаптером (в пределах возможности устройства).

2.2 Адресация устройств

Адресация в АТА тоже имеет «дисковые корни»: для накопителей изначально указывали адрес цилиндра, головки и сектора – так называемая трехмерная адресация CHS (Cyllinder-Head-Sector). Позже по ряду причин стали различать физическую (реальную для накопителя) и логическую (по которой с устройством общается программа) адресацию CHS. При этом одно и то же устройство могло иметь различную логическую геометрию (но, естественно, С?Н?S лог? С?Н?S физ). Преобразование логической адресации в физическую выполняется встроенным контроллером устройства. Позже пришли к линейной адресации логических блоков LBA (LogicalBlockAddressing), где адрес блока (сектора) определяется 28-битным числом.
Оригинальная спецификация АТА предусматривала 28-битный режим адресации. Это позволяло адресовать 228 (268 435 456) секторов по 512 байт каждый, что давало максимальную ёмкость в 137 ГБ (128 ГиБ). В стандартных PC BIOS поддерживал до 7,88 ГиБ (8,46 ГБ), допуская максимум 1024 цилиндра, 256 головок и 63 сектора. Это ограничение на число цилиндров/головок/секторов CHS в сочетании со стандартом IDE привело к ограничению адресуемого пространства в 504 МиБ (528 МБ). Для преодоления этого ограничения была введена схема адресации LBA (LogicalBlockAddress), что позволило адресовать до 7,88 ГиБ. Со временем и это ограничение было снято, что позволило адресовать сначала 32 ГиБ, а затем и все 128 ГиБ, используя все 28 разрядов (в АТА-4) для адресации сектора. Запись 28-битного числа, организована путём записи его частей в соответствующие регистры накопителя (с 1 по 8 бит в 4-й регистр, 9-16 в 5-й, 17-24 в 6-й и 25-28 в 7-й).
Адресация регистров организована при помощи трёх адресных линий DA0-DA2. 1-й регистр с адресом 0 является 16-разрядный, и используется для передачи данных между диском и контроллером. Остальные регистры 8-битные и используются для управления.
Новейшие спецификации ATA предполагают 48-битную адресацию, расширяя таким образом возможный предел до 128 ПиБ (144 петабайт). Однако файловые системы большинства современных операционных систем поддерживают диски объёмом лишь до 2 ТиБ (исключением является, например, файловая система Ext4, поддерживающая размер до 256ПиБ).

2.3 Назначение контактов разъема

Все информационные сигналы интерфейса передаются через 40-контактный разъем, у которого ключом является отсутствующий на вилке и закрытый на розетке контакт № 20. Длина кабеля не должна превышать 0,46 м, допустимая емкость проводников не более 35 пФ.
Терминаторы стандартом не предусматриваются (они имеются в каждом устройстве и хост-адаптере), но если кабель с тремя разъемами (розетками) используют для подключения одного устройства, то и его, и хост-адаптер рекомендуется подключать к противоположным концам кабеля. Все сигналы АТА являются логическими со стандартными ТТЛ-уровнями («0» – до 0,4В, «1» – 2,4-5В).
Устройства и адаптеры, рассчитанные на использование Ultra DMA, должны иметь в сигнальных цепях последовательные согласующие резисторы с сопротивлением для различных цепей 22, 33 или 82 Ом. Спецификация АТА устанавливает 40-контактный сигнальный и 4-контактный разъемы питания (Рисунок 1), но для малогабаритных устройств питание может подаваться по 44-проводному интерфейсному кабелю

Рисунок 1 – Разъемы интерфейса АТА: сигнальный и питания

2.4 Сигналы интерфейса ATA IDE

Типы и виды сигналов интерфейса ATAIDEпредставлены в следующей таблице (Таблица 1):
Таблица 1 – Сигналы интерфейса ATA IDE
Сигнал
Сигнал
RESET
I
1
2
?
GND
DD7
I/OTS
3
4
I/OTS
DD8
DD6
I/OTS
5
6
I/OTS
DD9
DD5
I/OTS
7
8
I/OTS
DD10
DD4
I/OTS
9
10
I/OTS
DD11
DD3
I/OTS
11
12
I/OTS
DD12
DD2
I/OTS
13
14
I/OTS
DD13
DD1
I/OTS
15
16
I/OTS
DD14
DD0
I/OTS
17
18
I/OTS
DD15
GND
?
19
20
?
Ключ
DMARQ
OTS 2
21
22
?
GND
DIOW | STOP 3
I
23
24
?
GND
DIOR | HDMARDY | HSTROBE 3
I
25
26
?
GND
IORDY | DDMARDY | DSTROBE 3
OTS 2
27
28
I/O
SPSYNC | SCEL
DMACK
I
29
30
?
GND
INTRQ
OTS 2
31
32
OOK
IOCS16
DA1
I
33
34
I, O 4
PDIAG | CBLID 3
DA0
I
35
36
I
DA2
CS0
I
37
38
I
CS1
DASP
I\OOK 5
39
40
?
GND
+5 В
?
41 6
42 6
?
+5 B
GND
?
43 6
44 6
?
Зарезервирован
    Тип сигнала для устройства: I – вход, О – выход, I/O – двунаправленный, TS – тристабильный, ОС – открытый коллектор.
    У старых устройств сигнал может иметь тип ОС (при разнотипных сигналах на одной шине возможен конфликт).
    Сигаалы, приведенные после символа /, используются только в режиме Ultra DMA (ATA-4).
    У ведущего устройства – вход, у ведомого – выход.
    У ведомого устройства – только выход.
    Контакты 41-44 используются только для миниатюрных дисков.
RESET (Devicereset) – сброс устройства (инвертированный сигнал сброса системной шины). Сигнал длительностью не менее 25 мкс вырабатывается после установления питающих напряжений.
DA (DeviceAddress) – три младших бита системной шины адреса, используемые для выбора регистров устройств.
DD (DeviceData) – двунаправленная 16-битная шина данных между адаптером и устройствами. При 8-битных обменах используются младшие биты D.
DIOR (Device I/O Read) – строб чтения портов ввода/вывода. Данные фиксируются по положительному перепаду сигнала.
DIOW (Device I/O Write) – строб записи портов ввода/вывода. Данные фиксируются по положительному перепаду сигнала.
IORDY (I/O channelready) – готовность устройства завершить цикл обмена. Низким уровнем сигнала во время цикла обмена устройство может ввести такты ожидания шины. Сигнал требуется при обмене в PIO MODE 3 и выше.
IOCS16 – разрешение 16-битных операций. Обращение ко всем регистрам, кроме регистра данных, всегда 8-битное. Для РЮ MODE 0, 1, 2 при активном сигнале обращения 16-битные, при неактивном – 8-битные. Для РЮ MODE 3, 4 и DMA все обмены 16-битные, кроме дополнительных байт (выходящих за границу 512-байтного сектора) «длинного» считывания и записи.
DMARQ (DMA ReQuest) – запрос обмена по каналу DMA (сигнал необязательный). При разрешении обмена сигнал (высокий уровень) вводится устройством по готовности к обмену. Введя сигнал DMARQ, устройство должно дождаться подтверждения от хост-адаптера сигналом DMACK, после чего может снять запрос DMARQ. Для очередной передачи запрос должен быть введен снова. В режиме Multi-Word DMA запрос может удерживаться на время передачи всех данных. Выход должен быть тристабильным, в активном состоянии (0 или 1) он может быть только у выбранного устройства во время работы с DMA. В АТА-1 для этого сигнала мог использоваться как тристабильный, так и стандартный ТТЛ-выход. Работа на одной шине устройств с разнотипными выходами DMARQ может привести к конфликтам.
DMACK (DMA aCKnowledge) – подтверждение DMA. Сигнал вырабатывается хост-адаптером как подтверждение цикла передачи. Передача слова данных управляется сигналами DIOR или DIOW. Во время обмена по каналу DMA сигналы IOCS16, CS0 и CS1 не используются, обмен всегда производится 16-битными словами.
INTRQ (Device interrupt) – запроспрерывания.Выход должен быть тристабильным, активный сигнал (логическую 1) вырабатывает только выбранное устройство, когда у него имеется необслуженный запрос прерывания и его вырабатывание не запрещено битом nIEN в регистре DeviceControl. Запрос сбрасывается по сигналу RESET, установке бита SRST в регистре DeviceControl, записи в регистр команд или чтении регистра состояния. При обменах РЮ запрос устанавливается в начале передачи каждого блока (сектора или группы секторов при многосекторных операциях). Исключения: по командам FormatTrack, WriteSector(S), WriteBuffer и WriteLong в начале передачи первого блока данных запрос прерывания не вырабатывается. При обменах DMA запрос прерывания вырабатывается только по завершении операции.
CSO (ChipSelect 0) – сигнал выбора блока командных регистров (CommandBlockRegisters). Для первого канала он вырабатывается при наличии на системной шине адреса порта ввода/вывода в диапазоне lFOh–lF7h (сигнал также называют CS1FX#).
CS1 (ChipSelect 1) – выбор блока управляющих регистров (ControlBlockRegisters). Для первого канала он вырабатывается при наличии на системной шине адреса порта ввода/вывода в диапазоне 3F6h-3F7h (часто этот сигнал называется CS3FX;.
PDIAG (Passeddiagnostics) – сигнал о прохождении диагностики. Ведущее устройство наблюдает за этим сигналом, который ведомое устройство должно выработать в ответ на сброс или команду диагностики. Если ведомое устройство обнаружено (по сигналу DASP), ведущее устройство ожидает сигнал в течение 31с после сброса и 6 с после команды диагностики. Если за это время сигнал не появился, ведущее устройство отмечает этот факт установкой бита 7 регистра ошибок. Если ведомое устройство не обнаружено, ведущее обнуляет регистр состояния ведомого устройства и сообщает свое состояние сразу после завершения собственной самодиагностики. Сигнал служит только для связи двух устройств и хост-адаптером не используется.
CBUD (Cable assembly type identifier) – идентификациятипакабеля.В 80-проводной сборке контакт 34 на разъеме хост-адаптера соединяется с шиной GND, а контакты 34 разъемов устройств соединяются между собой, но связи с разъемом хост-адаптера не имеют. После прохождения сброса (когда сигнал PDIAG снимается) хост может определить наличие 80-проводного кабеля по низкому" уровню сигнала.
DASP (DeviceActive, SlavePresent) – сигнал двойного назначения: индикатор активности устройства и присутствия ведомого устройства. Устройства имеют выход типа «открытый коллектор» с нагрузочным резистором 10 кОм к шине +5 В. После сброса по сигналу RESET или при инициализации по включении питания оба устройства в течение 1 мс должны деактивировать этот сигнал, после чего не позже чем через 400 мс его вводит ведомое устройство для сообщения о своем присутствии. Ведущее устройство не активирует этот сигнал в течение 450 мс. Сигнал деактивируется ведомым устройством после получения им команды или через 31с автрматически (смотря что произойдет раньше). После этого сигнал может быть введен любым устройством как индикатор активности. Адаптер использует этот сигнал для включения светодиодного индикатора доступа к диску.
SPSYNC/CSEL (SpindleSynchronization/ CableSelect) - синхронизация шпинделя/выборка кабелем. Сигнал двойного назначения, которое должно быть единым для обоих устройств. Сигнал SPSYNC позволяет синхронизировать шпиндели устройств (актуально для RAID-массивов); используется по усмотрению производителя накопителя. Сигнал CSEL позволяет устройствам определять свой адрес по положению на специальном кабеле с разрывом провода 28 между разъемами двух устройств (малораспространенная «кабельная выборка»). Эта линия на хост-адаптере заземлена, и ведущее устройство получает заземленную линию, а ведомое – не подключенную. Состояние сигнала (если он управляется хост-адаптером) должно удерживаться по крайней мере 31с после сигнала RESET.
При использовании режима Ultra DMA четыре линии получают новое назначение сигналов:
    STOP (StopUltra DMA burst) – останов передачи пакета Ultra DMA.
    DDMARDY (DeviceUltra DMA ready) – готовность устройства при приеме пакета Ultra DMA (управление потоком).
    DSTROBE (HostUltra DMA datastrobe) – строб данных устройства при передаче пакета хосту. Данные передаются по обоим перепадам DSTROBE.
    HDMARDY (HostUltra DMA ready) – готовность хоста при приеме им пакета Ultra DMA (управление потоком).
    HSTROBE (HostUltra DMA datastrobe) – строб данных хоста при передаче пакета устройству. Данные передаются по обоим перепадам HSTROBE.

2.5 Протокол взаимодействия хоста и устройства

Обычный протокол взаимодействия хоста с устройством выглядит следующим образом:
    Хост читает регистр состояния устройства, дожидаясь нулевого значения бита BSY. Если присутствуют два устройства, хост обращается к ним «наугад» – состояние будет сообщать последнее выбранное устройство.
    Дождавшись освобождения устройства, хост записывает в регистр DH байт, у которого бит DEV указывает на адресуемое устройство. Здесь кроется причина невозможности параллельной работы двух устройств на одной шине ATА: обратиться к устройству можно только после освобождения обоих устройств.
    Хост читает основной или альтернативный регистр состояния адресованного устройства, дожидаясь признака готовности (DRDY=1).
    Хост заносит требуемые параметры в блок командных регистров.
    Хост записывает код команды в регистр команд.
    Устройство устанавливает бит BSY и переходит к исполнению команды. Дальнейшие действия зависят от протокола передачи данных, заданного командой.
Для команд, не требующих передачи данных (ND):
Для команд данного типа, кроме шести вышеперечисленных пунктов стандартного взаимодействия хоста и устройства, выполняется ещё одна.
    Завершив исполнение команды, устройство сбрасывает бит BSY и устанавливает запрос прерывания (если он не запрещен). К этому моменту в регистрах состояния и ошибок уже имеется информация о результате исполнения. Выполнение завершается.
Единичное значение бита BSY может промелькнуть между шагами 6 и 7 так быстро, что хост его не зафиксирует, но для фиксации факта выполнения команды или ее части и предназначен запрос прерывания.

Для команд, требующих чтения данных в режиме PIO (PI):
Для команд данного типа, кроме шести вышеперечисленных пунктов стандартного взаимодействия хоста и устройства, выполняются ещё несколько.

    Подготовившись к передаче первого блока данных по шине АТА, устройство устанавливает бит DRQ. Если была ошибка, она фиксируется в регистрах состояния и ошибок. Далее устройство сбрасывает бит BSY и устанавливает запрос прерывания (если он не запрещен).
    Зафиксировав обнуление бита BSY (или по прерыванию), хост считывает регистр состояния, что приводит к сбросу прерывания от устройства.
    Если хост обнаружил единичное значение бита DRQ, он производит чтение первого блока данных в режиме PIO (адресуясь к регистру данных). Если обнаружена ошибка, считанные данные могут быть недостоверными.После передачи блока данных возможно одно из следующих действий:
    Если на шаге 8 ошибка не обнаружена, а требуется передача следующего блока, устройство устанавливает бит BSY, и данная последовательность повторяется с шага 7.
    Если есть ошибка или передан последний блок данных, устройство сбрасывает бит DRQ и выполнение команды завершается
Для операций записи данных после шага 6 для устройства начинается активная фаза записи на носитель, что отмечается установкой бита BSY.

Для команд, требующих записи данных в режиме PIO (PO и P):
Для команд данного типа, кроме шести вышеперечисленных пунктов стандартного взаимодействия хоста и устройства, выполняются ещё несколько.

    Подготовившись к приему первого блока данных по шине ATА, устройство устанавливает бит DRQ (если нет ошибок) и сбрасывает бит BSY. Если была ошибка, она фиксируется.
    Зафиксировав обнуление бита BSY, хост считывает регистр состояния
    Если хост обнаружил единичное значение бита DRQ, он производит запись первого блока данных в режиме PIO по адресу в регистре данных
    После передачи блока данных возможно одно из следующих действий:
    Если обнаружена ошибка, устройство сбрасывает бит DRQ, устанавливает запрос прерывания и выполнение команды завершается. Переданные по шине данные остаются необработанными устройством (не записываются на носитель).
    Если ошибка не обнаружена, устройство устанавливает бит BSY и переходит к следующему шагу
    Устройство обрабатывает принятый блок данных, затем:
    Если нет ошибок и обработанный блок – последний, устройство сбрасывает бит BSY и устанавливает запрос прерывания, на чем выполнение команды успешно завершается;
    Если обнаружена ошибка, выполнение команды завершается таким же образом, но с установкой бит ошибок;
    Если нет ошибок и требуется передача следующего блока, выполняются следующие шаги:
    По готовности приема следующего блока устройство устанавливает бит DRQ, сбрасывает бит BSY и устанавливает запрос прерывания.
    По обнулению бита BSY (или по прерыванию) хост считывает регистр состояния.
    Обнаружив бит DRQ, хост выполняет запись очередного блока в регистр данных, и последовательность повторяется с шага 11. Команды с передачей данных в режиме DMA выполняются похожим образом, но:
    Вместо PIO используется прямой доступ к памяти. Хост должен проинициализировать канал DMA до записи кода в регистр команд, чтобы по появлении сигнала DMARQ начался обмен
    Запрос прерывания даже в многосекторных передачах производится один раз – по выполнении команды

2.6 Протоколы и режимы передачи данных

Программа общается с устройствами АТА через регистры, используя инструкции ввода/вывода IN и OUT. Для передачи данных с максимальной скоростью применяют программный доступ к регистру данных или DMA. Тип обмена задается командой. Программный доступ обязателен для всех устройств. Команды режима DMA устройствами могут не поддерживаться.
Программный доступ PIO (ProgrammedInput/Output) выполняется в виде следующих друг за другом операций чтения или записи в пространстве ввода/вывода по адресу регистра данных. В отличие от программно-управляемого ввода/вывода, применяемого, например, для общения с LPT-портом, передача блока данных в режиме PIO производится без программного опроса какого-либо бита готовности для передачи каждого слова. Готовность устройства проверяется перед началом передачи блока, после чего хост производит серию операций в определенном темпе. Темп определяется выбранным режимом PIO Mode (Таблица 2).
Для режимов определены допустимые параметры временной диаграммы цикла обмена.
Таблица 2 – Параметры режимов передачи (PIO mode)

Обмен PIO программно реализуется с помощью инструкций ввода/вывода строк REP INS или REP OUTS с занесенным в регистр СХ количеством слов (или байт) в передаваемом блоке. Эти инструкции обеспечивают максимально возможную скорость обмена для данного процессора и системной шины. «Обуздать» процессор в соответствии с выбранным режимом входит в задачу адаптера АТА, который использует для удлинения цикла сигнал готовности шины (для ISA – IOCHRDY). Традиционные режимы 0, 1 и 2 имеют временные параметры, фиксируемые только хост-адаптером. Для прогрессивных режимов АТА-2 (PIO Mode 3 и старше) устройство может затормозить обмен, используя сигнал готовности IORDY. Программный обмен на все время передачи блока занимает и процессор, и системную шину.
Обмен по каналу DMA занимает исключительно шины ввода/ вывода и памяти. Процессору требуется выполнить только процедуру инициализации канала, после чего до прерывания от устройства в конце передачи блока он свободен (этим могут воспользоваться многозадачные системы). Стандартные каналы DMA шины ISA для интерфейса АТА практически не используются из-за низкой пропускной способности.
Высокопроизводительные адаптеры АТА могут иметь собственные более эффективные контроллеры. Режимы обмена по каналу DMA бывают одиночными и множественными.
При одиночном режиме (SingleWord DMA) устройство для передачи каждого слова вырабатывает сигнал запроса DMARQ и сбрасывает его по сигналу DMACK#, подтверждающему цикл обмена.
При множественном режиме (Multiword DMA) на сигнал DMARQ хост отвечает потоком циклов, сопровождаемых сигналами DMACK#. Если устройство не справляется с потоком, оно может приостановить его снятием сигнала DMARQ, a по готовности установить его снова. Множественный режим позволяет развить более высокую скорость передачи.
Новейшее достижение – режим Ultra DMA, позволяющий достигнуть скорости передачи 33 Мбайт/с и обеспечить достоверность передачи, чего не делалось ни в PIO, ни в стандартных режимах DMA. Стандартом АТА-4 определено 3 режима Ultra DMA (0, 1 и 2), выбор режима осуществляется командой SetFeatures.
В режимах Ultra DMA сигналы DMARQ и DACK# сохраняют свое назначение, а вот смысл сигналов DIOR#, DIOW# и IORDY на время передачи пакета (Ultra DMA Burst) существенно меняется.
В пакете данные на шине сопровождаются стробом, генерируемым источником данных, причем для синхронизации используются оба перепада сигналов. Это позволяет повысить пропускную способность шины, не увеличивая частоту переключений сигналов сверх 8,33 с -1 (этот предел для обычного кабеля достигается в режиме РЮ Mode 4 и Multiword DMA Mode 2).
Каждое переданное слово участвует в подсчете CRC-кода, который передается в конце пакета. Подсчет ведется и источником данных, и приемником. При несовпадении принятого и ожидаемого кода фиксируется ошибка передачи.
Передача в пакете может приостанавливаться, если приемник снимет сигнал готовности (DDMARDY или HDMARDY). Передача пакета может прекращаться по инициативе устройства (снятием сигнала) или хоста (сигналом STOP). Противоположная сторона должна подтвердить окончание цикла сигналом STOP или DMARQ соответственно.
Правильный выбор режима обмена обеспечивает надежность и производительность. Все устройства поддерживают режим PIO Mode 0, в котором считывается блок параметров идентификации. В блоке имеются поля, описывающие режим обмена по умолчанию и более эффективные режимы обмена, поддерживаемые устройством. Командой SetFeatures можно изменить параметры режима. Иногда накопитель не обеспечивает надежной передачи данных в заявленном высокоскоростном режиме. Если данные начинают пропадать, первым делом следует понизить режим обмена.
Параметры стандартных режимов обмена по DMA приведены в таблице (Таблица 3).
Таблица 3 – Параметры циклов DMA для интерфейса ATA


и т.д.................
Мы можем оповещать вас о новых статьях,
чтобы вы всегда были в курсе самого интересного.

 
Режим
Минимальное время цикла (нс)
Скорость передачи (Мбайт/с)
Singleword DMA Mode 0
960
2,08
Singleword DMA Mode 1
480
4,16
Singleword DMA Mode 2
240
8,33
Multiword DMA Mode 0
480
4,12
Multiword DMA Mode 1
150
13,3
Multiword DMA Mode 2

В этой статье речь пойдет о том, что позволяет подключить жесткий диск к компьютеру, а именно, об интерфейсе жесткого диска. Точнее говорить, об интерфейсах жестких дисков, потому что технологий для подключения этих устройств за все время их существования было изобретено великое множество, и обилие стандартов в данной области может привести в замешательство неискушенного пользователя. Впрочем, обо все по порядку.

Интерфейсы жестких дисков (или строго говоря, интерфейсы внешних накопителей, поскольку в их качестве могут выступать не только , но и другие типы накопителей, например, приводы для оптических дисков) предназначены для обмена информацией между этими устройствами внешней памяти и материнской платой. Интерфейсы жестких дисков, не в меньшей степени, чем физические параметры накопителей, влияют на многие рабочие характеристики накопителей и на их производительность. В частности, интерфейсы накопителей определяют такие их параметры, как скорость обмена данными между жестким диском и материнской платой, количество устройств, которые можно подключить к компьютеру, возможность создания дисковых массивов, возможность горячего подключения, поддержка технологий NCQ и AHCI, и.т.д. Также от интерфейса жесткого диска зависит, какой кабель, шнур или переходник для его подключения к материнской плате вам потребуется.

SCSI - Small Computer System Interface

Интерфейс SCSI является одним из самых старых интерфейсов, разработанных для подключения накопителей в персональных компьютерах. Появился данный стандарт еще в начале 1980-х гг. Одним из его разработчиков был Алан Шугарт, также известный, как изобретатель дисководов для гибких дисков.

Внешний вид интерфейса SCSI на плате и кабеля подключения к нему

Стандарт SCSI (традиционно данная аббревиатура читается в русской транскрипции как «скази») первоначально предназначался для использования в персональных компьютерах, о чем свидетельствует даже само название формата – Small Computer System Interface, или системный интерфейс для небольших компьютеров. Однако так получилось, что накопители данного типа применялись в основном в персональных компьютерах топ-класса, а впоследствии и в серверах. Связано это было с тем, что, несмотря на удачную архитектуру и широкий набор команд, техническая реализация интерфейса была довольно сложна, и не подходила по стоимости для массовых ПК.

Тем не менее, данный стандарт обладал рядом возможностей, недоступных для прочих типов интерфейсов. Например, шнур для подключения устройств Small Computer System Interface может иметь максимальную длину в 12 м, а скорость передачи данных – 640 МБ/c.

Как и появившийся несколько позже интерфейс IDE, интерфейс SCSI является параллельным. Это означает, что в интерфейсе применяются шины, передающие информацию по нескольким проводникам. Данная особенность являлась одним из сдерживающих факторов для развития стандарта, и поэтому в качестве его замены был разработан более совершенный, последовательный стандарт SAS (от Serial Attached SCSI).

SAS - Serial Attached SCSI

Так выглядит интерфейс SAS серверного диска

Serial Attached SCSI разрабатывался в усовершенствования достаточно старого интерфейса подключения жестких дисков Small Computers System Interface. Несмотря на то, что Serial Attached SCSI использует основные достоинства своего предшественника, тем не менее, у него есть немало преимуществ. Среди них стоит отметить следующие:

  • Использование общей шины всеми устройствами.
  • Последовательный протокол передачи данных, используемый SAS, позволяет задействовать меньшее количество сигнальных линий.
  • Отсутствует необходимость в терминации шины.
  • Практически неограниченное число подключаемых устройств.
  • Более высокая пропускная способность (до 12 Гбит/c). В будущих реализациях протокола SAS предполагается поддерживать скорость обмена данными до 24 Гбит/c.
  • Возможность подключения к контроллеру SAS накопителей с интерфейсом Serial ATA.

Как правило, системы Serial Attached SCSI строятся на основе нескольких компонентов. В число основных компонентов входят:

  • Целевые устройства. В эту категорию включают собственно накопители или дисковые массивы.
  • Инициаторы – микросхемы, предназначенные для генерации запросов к целевым устройствам.
  • Система доставки данных – кабели, соединяющие целевые устройства и инициаторы

Разъемы Serial Attached SCSI могут иметь различную форму и размер, в зависимости от типа (внешний или внутренний) и от версий SAS. Ниже представлены внутренний разъем SFF-8482 и внешний разъем SFF-8644, разработанный для SAS-3:

Слева - внутренний разъём SAS SFF-8482; Справа - внешний разъём SAS SFF-8644 с кабелем.

Несколько примеров внешнего вида шнуров и переходников SAS: шнур HD-Mini SAS и шнур-переходник SAS-Serial ATA.

Слева - шнур HD Mini SAS; Справа - переходной шнур с SAS на Serial ATA

Firewire - IEEE 1394

Сегодня достаточно часто можно встретить жесткие диски с интерфейсом Firewire. Хотя через интерфейс Firewire к компьютеру можно подключить любые типы периферийных устройств, и его нельзя назвать специализированным интерфейсом, предназначенным для подключения исключительно жестких дисков, тем не менее, Firewire имеет ряд особенностей, которые делают его чрезвычайно удобным для этой цели.

FireWire - IEEE 1394 - вид на ноутбуке

Интерфейс Firewire был разработан в середине 1990-х гг. Начало разработке положила небезызвестная фирма Apple, нуждавшаяся в собственной, отличной от USB, шине для подключения периферийного оборудования, прежде всего мультимедийного. Спецификация, описывающая работу шины Firewire, получила название IEEE 1394.

На сегодняшний день Firewire представляет собой один из наиболее часто используемых форматов высокоскоростной последовательной внешней шины. К основным особенностям стандарта можно отнести:

  • Возможность горячего подключения устройств.
  • Открытая архитектура шины.
  • Гибкая топология подключения устройств.
  • Меняющаяся в широких пределах скорость передачи данных – от 100 до 3200 Мбит/c.
  • Возможность передачи данных между устройствами без участия компьютера.
  • Возможность организации локальных сетей при помощи шины.
  • Передача питания по шине.
  • Большое количество подключаемых устройств (до 63).

Для подключения винчестеров (обычно посредством внешних корпусов для жестких дисков) через шину Firewire, как правило, используется специальный стандарт SBP-2, использующий набор команд протокола Small Computers System Interface. Существует возможность подключения устройств Firewire к обычному разъему USB, но для этого требуется специальный переходник.

IDE - Integrated Drive Electronics

Аббревиатура IDE, несомненно, известна большинству пользователей персональных компьютеров. Стандарт интерфейса для подключения жестких дисков IDE был разработан известной фирмой, производящей жесткие диски – Western Digital. Преимуществом IDE по сравнению с другими существовавшими в то время интерфейсами, в частности, интерфейсом Small Computers System Interface, а также стандартом ST-506, было отсутствие необходимости устанавливать контроллер жесткого диска на материнскую плату. Стандарт IDE подразумевал установку контроллера привода на корпус самого накопителя, а на материнской плате оставался лишь хост-адаптер интерфейса для подключения приводов IDE.

Интерфейс IDE на материнской плате

Данное нововведение позволило улучшить параметры работы накопителя IDE благодаря тому, что сократилось расстояние между контроллером и самим накопителем. Кроме того, установка контроллера IDE внутрь корпуса жесткого диска позволила несколько упростить как материнские платы, так и производство самих винчестеров, поскольку технология давала свободу производителям в плане оптимальной организации логики работы накопителя.

Новая технология первоначально получила название Integrated Drive Electronics (Встроенная в накопитель электроника). Впоследствии был разработан описывающий ее стандарт, названный ATA. Это название происходит от последней части названия семейства компьютеров PC/AT посредством добавления слова Attachment.

Для подключения жесткого диска или другого устройства, например, накопителя для оптических дисков, поддерживающего технологию Integrated Drive Electronics, к материнской плате, используется специальный кабель IDE. Поскольку ATA относится к параллельным интерфейсам (поэтому его также называют Parallel ATA или PATA), то есть, интерфейсам, предусматривающим одновременную передачу данных по нескольким линиям, то его кабель данных имеет большое количество проводников (обычно 40, а в последних версиях протокола имелась возможность использовать 80-жильный кабель). Обычный кабель данных для данного стандарта имеет плоский и широкий вид, но встречаются и кабели круглого сечения. Кабель питания для накопителей Parallel ATA имеет 4-контактный разъем и подсоединен к блоку питания компьютера.

Ниже приведены примеры кабеля IDE и круглого шнура данных PATA:

Внешний вид интерфейсного кабеля: cлева - плоский, справа в круглой оплетке - PATA или IDE.

Благодаря сравнительной дешевизне накопителей Parallel ATA, простоте реализации интерфейса на материнской плате, а также простоте установки и конфигурации устройств PATA для пользователя, накопители типа Integrated Drive Electronics на длительное время вытеснили с рынка винчестеров для персональных компьютеров бюджетного уровня устройства других типов интерфейса.

Однако стандарт PATA имеет и ряд недостатков. Прежде всего, это ограничение по длине, которую может иметь кабель данных Parallel ATA – не более 0,5 м. Кроме того, параллельная организация интерфейса накладывает ряд ограничений на максимальную скорость передачи данных. Не поддерживает стандарт PATA и многие расширенные возможности, которые имеются у других типов интерфейсов, например, горячее подключение устройств.

SATA - Serial ATA

Вид интерфейса SATA на материнской плате

Интерфейс SATA (Serial ATA), как можно догадаться из названия, является усовершенствованием ATA. Заключается это усовершенствование, прежде всего, в переделке традиционного параллельного ATA (Parallel ATA) в последовательный интерфейс. Однако этим отличия стандарта Serial ATA от традиционного не ограничиваются. Помимо изменения типа передачи данных с параллельного на последовательный, изменились также разъемы для передачи данных и электропитания.

Ниже приведен шнур данных SATA:

Шнур передачи данных для SATA интерфейса

Это позволило использовать шнур значительно большей длины и увеличить скорость передачи данных. Однако минусом стало то обстоятельство, что устройства PATA, которые до появления SATA присутствовали на рынке в огромных количествах, стало невозможно напрямую подключить в новые разъемы. Правда, большинство новых материнских плат все же имеют старые разъемы и поддерживают подключение старых устройств. Однако обратная операция – подключение накопителя нового типа к старой материнской плате обычно вызывает куда больше проблем. Для этой операции пользователю обычно требуется переходник Serial ATA to PATA. Переходник для кабеля питания обычно имеет сравнительно простую конструкцию.

Переходник питания Serial ATA to PATA:

Слева общий вид кабеля; Cправа укрупнено внешний вид коннекторов PATA и Serial ATA

Сложнее, однако, дело обстоит с таким устройством, как переходник для подключения устройства последовательного интерфейса в разъем для параллельного интерфейса. Обычно переходник такого типа выполнен в виде небольшой микросхемы.

Внешний вид универсального двунаправленного переходника между интерфейсами SATA - IDE

В настоящее время интерфейс Serial ATA практически вытеснил Parallel ATA, и накопители PATA можно встретить теперь в основном лишь в достаточно старых компьютерах. Еще одной особенностью нового стандарта, обеспечившей его широкую популярность, стала поддержка .

Вид переходника с IDE на SATA

О технологии NCQ можно рассказать чуть подробнее. Основное преимущество NCQ состоит в том, что она позволяет использовать идеи, которые давно были реализованы в протоколе SCSI. В частности, NCQ поддерживает систему упорядочивания операций чтения/записи, поступающих к нескольким накопителям, установленным в системе. Таким образом, NCQ способна значительно повысить производительность работы накопителей, в особенности массивов жестких дисков.

Вид переходника с SATA на IDE

Для использования NCQ необходима поддержка технологии со стороны жесткого диска, а также хост-адаптера материнской платы. Практически все адаптеры, поддерживающие AHCI, поддерживают и NCQ. Кроме того, NCQ поддерживают и некоторые старые проприетарные адаптеры. Также для работы NCQ требуется ее поддержка со стороны операционной системы.

eSATA - External SATA

Отдельно стоит упомянуть о казавшемся многообещающим в свое время, но так и не получившем широкого распространения формате eSATA (External SATA). Как можно догадаться из названия, eSATA представляет собой разновидность Serial ATA, предназначенную для подключения исключительно внешних накопителей. Стандарт eSATA предлагает для внешних устройств большую часть возможностей стандартного, т.е. внутреннего Serial ATA, в частности, одинаковую систему сигналов и команд и столь же высокую скорость.

Разъем eSATA на ноутбуке

Тем не менее, у eSATA есть и некоторые отличия от породившего его стандарта внутренней шины. В частности, eSATA поддерживает более длинный кабель данных (до 2 м), а также имеет более высокие требования к питанию накопителей. Кроме того, разъемы eSATA несколько отличаются от стандартных разъемов Serial ATA.

По сравнению с другими внешними шинами, такими, как USB и Firewire, eSATA, однако, имеет один существенный недостаток. Если эти шины позволяют осуществлять электропитание устройства через сам кабель шины, то накопитель eSATA требует специальные разъемы для питания. Поэтому, несмотря на сравнительно высокую скорость передачи данных, eSATA в настоящее время не пользуется большой популярностью в качестве интерфейса для подключения внешних накопителей.

Заключение

Информация, хранящаяся на жестком диске, не может стать полезной для пользователя и доступной для прикладных программ до тех пор, пока к ней не получит доступ центральный процессор компьютера. Интерфейсы жестких дисков представляют собой средство для связи между этими накопителями и материнской платой. На сегодняшний день существует немало различных типов интерфейсов жестких дисков, каждый из которых имеет свои достоинства, недостатки и характерные особенности. Надеемся, что приведенная в данной статье информация во многом окажется полезной для читателя, ведь выбор современного жесткого диска во многом определяются не только его внутренними характеристиками, такими, как емкость, объем кэш-памяти, скорость доступа и вращения, но и тем интерфейсом, для которого он был разработан.

PATA — Parallel Advanced Technology Attachment - параллельный интерфейс подключения накопителей, фактически другое название для IDE

ATA — Advanced Technology Attachment - интерфейс подключения накопителей
ATAPI — Advanced Technology Attachment Packet Interface — вариант интерфейса для подключения сменных устройств (CD/DVD ROM)

IDE — Integrated Device Electronics — дословно интегрированная электроника устройства — т.е. контроллер встроен в сам привод (см. ниже DMA)
DMA — Direct memory access - прямой доступ к памяти

SCSISmall Computer System Interface — вариант PATA для серверов.

Теперь подробнее.

Важным этапом в развитии ATA стал переход от PIO (англ. Programmed input/output - программный ввод-вывод) к DMA (англ. Direct memory access - прямой доступ к памяти). При использовании PIO считыванием данных с диска управлял центральный процессор компьютера, что приводило к повышенной нагрузке на процессор и замедлению работы в целом. По причине этого компьютеры, использовавшие интерфейс ATA, обычно выполняли операции, связанные с диском, медленнее, чем компьютеры, использовавшие SCSI и другие интерфейсы. Введение DMA существенно снизило затраты процессорного времени на операции с диском.

Поначалу стандарт работал только с жёсткими дисками, но затем был изменен для работы и с другими устройствами. К таким устройствам относятся приводы CD и DVD-ROM, магнитооптические диски и ленточные накопители. Этот новый (расширенный) стандарт стал называться «Advanced Technology Attachment Packet Interface» (ATAPI ), и поэтому полное его название выглядит как — «ATA/ATAPI ».

Всю хронологию развития и достижений на пути становления ATA интерфейса можно представить в виде следующей сводной таблицы.

Скорости обмена данными через интерфейс постоянно увеличивались, что, в свою очередь, на этапе внедрения ревизии «Ultra ATA Mode 4» (он же — Ultra DMA/66 со скоростью передачи 66 мегабайт в секунду) вызвало необходимость внедрения нового интерфейсного кабеля с удвоенным количеством проводников (четвертая колонка в таблице). Раньше все кабели имели именно 40 жил. Но дело в том, что с ростом скоростей передачи данных резко возросла роль взаимных помех и наводок отдельных проводников в кабеле друг на друга.

Именно поэтому был введен новый кабель. Причем все дополнительные двадцать пар его проводов это — проводники заземления (Ground), чередующиеся с проводниками информационными. Такое чередование уменьшает емкостную связь между отдельными жилами и, таким образом, сокращает взаимные наводки. При возросших скоростях передачи данных появляется еще одно ограничение — на максимально допустимую длину кабеля. Стандарт ATA всегда устанавливал эту границу в 46 см. Самих контактов (штырьков) на устройстве осталось все так же 40 (без учета «ключа») — по одному на каждый провод. Последующим (более быстрым режимам) «UDMA5» и «UDMA6» также требовался 80-жильный кабель.

Установка джамперов (перемычек) для дисков IDE и подключение шлейфов

Перед подключением шлейфа IDE необходимо правильно установить джамперы на устройствах. Каждый шлейф поддерживает два устройства, одно должно быть Master, второе — Slave.
Зачем это вообще нужно? ATA стандарт является по своей природе параллельным интерфейсом . Это значит, что каждый канал в любой момент времени может обрабатывать только один запрос к одному (от одного) устройства. Следующий запрос, даже к другому устройству, будет ожидать завершения выполнения текущего обращения. Разные IDE каналы при этом могут работать совершенно автономно. Чтобы контроллер «понимал» от «кого» пришел запрос (DVD или HDD) и нужны перемычки.

Джампер выглядит вот так — это специальная перемычка на два пина:

Проще всего для оптических накопителей, выбор из 3-х вариантов.

Иногда производитель вообще не указывает распиновку — но можно легко запомнить.
Ближние пины к колодке подключения IDE — MA (Master), джампер установлен
Средние пины — SL (Slave)
Крайние пины — CS (Cable Select).

Для жестких дисков выбор вариантов больше.

Мы видим знакомый выбор в первых трех вариантах и два дополнительных варианта:
Master with non-ATA compatible slave — ведущий с несовместимым ведомым (будет работать только Master)
Limit drive capaciti to 32 Gbytes — ограничить емкость диска 32 Гб (для старых материнских плат).

Теперь посмотрим на сам шлейф IDE , он выглядит вот так (на 80 жил):


Синия колодка (у правильных производителей) подключается к материнской плате, противоположный черный разъем к устройству Master и средний серый разъем к устройству Slave. Если цвет у колодок другой (у неправильных производителей) — то ориентируемся на спецификацию. Окончание более длинного отрезка кабеля подключается к материнской плате, а оставшиеся два разъема (на более коротком отрезке) — к устройствам. Причем «Master» находится всегда на конце кабеля , а «Slave» — ближе к середине.

Почему master всегда на конце кабеля?

Если устройство одно, то оно должно быть мастером и быть на конце кабеля. При включении одного устройства к серому разъему — такое размещение приводит к появлению ненужного куска кабеля на конце, что нежелательно. Как из соображений удобства, так и по физическим параметрам: этот кусок приводит к отражению сигнала, особенно на высоких частотах (появляются ошибки, контроллер начинает снижать скорость передачи).

Что такое «Enable cable select», который мы видели при установке перемычек (сокращенно — «Cable select », совсем коротко — «CS »)? Это режим, при котором (в зависимости от расположения на шлейфе) «Master» и «Slave» определяются автоматически. Для его реализации нужен специальный шлейф с кабельной выборкой (разрыв 28 проводника).

Вот картинка для 40-жильного кабеля.

Вот фото реального кабеля с кабельной выборкой.

Таким образом, на одном из устройств контакт 28 оказывается заземленным (режим Master), а на другом - свободным (Slave). Этот режим корректно работает только при наличии двух устройств на кабеле и установленных перемычек в CS. На обычном кабеле этот режим не работает.

Еще есть экзотический вариант кабеля для режима Cable Select. Он симметричный, т.е. если его сложить пополам, то ровно посредине будет разъем. Именно он подключается к материнской плате, а обе оставшиеся крайние «колодки» — к устройствам IDE. Подобный режим не прижился.

Дополнительные метки для правильного подключения кабеля IDE.

На любом (стандартном) ATA кабеле первый пин (провод) всегда помечен (обычно — красным). Производители размещают на материнской плате наглядные подсказки, по которым можно сориентироваться.

т.е. красный провод должен быть подключен к пину 1. Еще одна подсказка состоит в том, что шлейф данных должен всегда устанавливаться первым (маркированным) пином в сторону разъема питания жесткого диска.


Зачем все эти сложности и подсказки? Как можно неправильно подключить IDE (ATA) кабель, если он имеет «ключ» на своем разъеме? Дело в том, что в период перехода от интерфейсного кабеля с 40-ка проводниками на 80-ти жильный (с дополнительным заземлением), первый из них не имел этого «ключа» и его можно было подключить в материнскую плату не той стороной. На фото ниже видно оба типа интерфейсного кабеля (слева 80-ти жильный имеет один отсутствующий контакт в середине разъема, справа — старый 40-жильный шлейф).

Корректное подключение нескольких устройств

Да, можно подключать несколько устройств как удобнее:) Но с точки зрения быстродействия желательно:
— два активных устройства лучше подключить к разным шлефам
— IDE HDD и IDE DVD-ROM лучше подключить к разным шлейфам, т.к. протоколы разные (PATA / ATAPI) и быстродействие оптического привода на порядок ниже HDD

И немного о SCSI.

SCSI — Small Computer System Interface — параллельный интерфейс, в основном для серверных решений.

Существует три стандарта электрической организации параллельного интерфейса SCSI:

  • SE (single-ended ) - асимметричный SCSI, для передачи каждого сигнала используется отдельный проводник.
  • LVD (low-voltage-differential ) - интерфейс дифференциальной шины низкого напряжения, сигналы положительной и отрицательной полярности идут по разным физическим проводам - витой паре. На один сигнал приходится по одной витой паре проводников. Используемое напряжение при передаче сигналов ±1,8 В.
  • HVD (high-voltage-differential ) - интерфейс дифференциальной шины высокого напряжения, отличается от LVD повышенным напряжением и специальными приёмопередатчиками.

Все версии приведены в таблице.

Наименование Пропускная способность Максимальное количество устройств
SCSI 5 Мбайт/сек 8
Fast SCSI 10 Мбайт/сек 8
Wide SCSI 20 Мбайт/сек 16
Ultra SCSI 20 Мбайт/сек 4-8
Ultra Wide SCSI 40 Мбайт/сек 4-16
Ultra2 SCSI 40 Мбайт/сек 8
Ultra2 Wide SCSI 80 Мбайт/сек 16
Ultra3 SCSI 160 Мбайт/сек 16
Ultra-320 SCSI 320 Мбайт/сек 16
Ultra-640 SCSI 640 Мбайт/сек 16

Сегодня, уважаемые читатели, я бы хотел поговорить с Вами о том, что такое ATA/ATAPI контроллеры, откуда появился интерфейс IDE и что это такое?

Для начала давайте с Вами усвоим необходимый минимум теории. Когда-то очень давно (еще в прошлом тысячелетии:)) фирма «Western Digital» разработала параллельный интерфейс подключения .

Новым и важным в этом было то, что контроллер (управлявший всеми операциями ввода-вывода) был интегрирован в сам привод, а не вынесен в виде отдельной платы расширения, как раньше. Это позволяло:

  1. убыстрить работу устройства
  2. удешевить производство
  3. и упростить схему обмена данными с накопителем

Давайте сразу разберем основные аббревиатуры, чтобы потом не путаться. Сначала интерфейс получил название «IDE » (Integrated Drive Electronics - "Диск со встроенным контроллером"), но проблема заключалась в том, что это было слишком общее определение, под которое могло подойти много чего, имеющего «диск» и «контроллер». В связи с этим был разработан стандарт, который получил название «ATA » (анг. AT Attachment). После появления устройств SATA, это название было изменено на PATA (Parallel ATA).

Многие компьютерщики иногда говорят IDE вместо ATA или - наоборот. В принципе, это - одно и то же, просто правильнее - ATA:)

Поначалу стандарт работал только с жёсткими дисками, но затем был изменен для работы и с другими устройствами. К таким устройствам относятся приводы CD и DVD-ROM, магнитооптические диски и ленточные накопители. Этот новый (расширенный) стандарт стал называться «Advanced Technology Attachment Packet Interface» (ATAPI ), и поэтому полное его название выглядит как - «ATA/ATAPI ».

Вот как выглядят разъемы этого образца на материнской плате (два нижних, верхний - флоппи диск):

Данный интерфейс развивался во времени и одним из значимых этапов стал переход от программного ввода-вывода данных (PIO - Programmed input-output) к прямому доступу к памяти (DMA - Direct Memory Access). Что это значит? При использовании программного метода ввода-вывода считыванием данных с диска управлял , что приводило к абсолютно лишней на него нагрузке, так как ЦП приходилось заниматься еще и дисковыми операциями.

В то время пальму первенства держал интерфейс обмена данными, носящий название скази («SCSI » - Small Computer System Interface) . Он выгодно отличался высокой скоростью передачи и применялся в высокопроизводительных серверных платформах. Поэтому режим DMA для устройств IDE стал мощным толчком для дальнейшего развития стандарта.

При прямом доступе к памяти потоком данных управляет уже сам накопитель, считывая данные в память и обратно без участия процессора. Роль последнего сводится лишь к отдаче команд на выполнение того или иного действия. При этом жесткий диск выдает сигнал запроса на операцию прямого доступа к памяти. Если операция доступа данный момент возможна, контроллер дает "добро" и диск начинает выдавать данные, а контроллер считывает их в (без участия CPU).

Вот, к слову, как выглядит плата типичного контроллера, устанавливаемая производителями на свои изделия:


Главный чип здесь - MCU (Microcontroller Unit), он и осуществляет управление всеми операциями ввода-вывода накопителя и контролирует его работу.

Примечание: Операция прямого доступа к памяти возможна только тогда, когда такой режим работы поддерживается одновременно «BIOS», контроллером и операционной системой. Иначе система будет работать используя предыдущий режим программного ввода-вывода (PIO).

Всю хронологию развития и достижений на пути становления ATA интерфейса можно представить в виде следующей сводной таблицы.


Как видите (из второй колонки) скорости обмена данными через интерфейс постоянно увеличивались, что, в свою очередь, на этапе внедрения ревизии «Ultra ATA Mode 4» (он же - Ultra DMA/66 со скоростью передачи 66 мегабайт в секунду) вызвало необходимость внедрения нового интерфейсного кабеля с удвоенным количеством проводников (четвертая колонка в таблице).

Для сравнения - оба кабеля рядом:

На цвет не обращайте внимания:) Кабель слева имеет 80 жил (проводников), справа - 40. Как мы видим из таблицы, раньше все кабели имели именно 40 жил. Но дело в том, что с ростом скоростей передачи данных резко возросла роль взаимных помех и наводок отдельных проводников в кабеле друг на друга.

Именно поэтому был введен новый кабель. Причем все дополнительные двадцать пар его проводов это - проводники заземления (Ground), чередующиеся с проводниками информационными. Такое чередование уменьшает емкостную связь между отдельными жилами и, таким образом, сокращает взаимные наводки. Да и если подумать логически, что там еще может быть, если самих контактов (штырьков) на устройстве осталось все так же 40 (без учета "ключа") - по одному на каждый провод. Последующим (более быстрым режимам) «UDMA5» и «UDMA6» также требовался 80-жильный кабель.

Обратите Ваше внимание на колодки обоих кабелей. У них есть "ключ" (пластмассовый «П» образный выступ), который исключает неправильное подключение к разъему. Мало того, у 80-ти жильного кабеля на интерфейсе отсутствует одно из центральных гнезд (на материнских платах тогда начали устанавливать специальный IDE-разъем без центрального контакта), который также выполняет функцию дополнительного "ключа".

Но, - продолжим, чтобы закончить тему о кабелях. При возросших скоростях передачи данных появляется еще одно ограничение - на максимально допустимую длину кабеля. Стандарт ATA всегда устанавливал эту границу в 46 см. В продаже, к примеру, широко распространены кабели от 44-х до 48-ми сантиметров. Встречаются также изделия откровенно превышающие рекомендованный предел и, как Вы понимаете, их использование вряд ли можно рекомендовать.

Чтобы более полно осветить тему добавлю, что бывают еще, так называемые, "круглые" ATA шлейфы.


Выглядят они более благородно, чем свои "плоские" собратья, но, Вы же понимаете, что это снова - не стандарт, а - изделие сторонних производителей, которое должно обеспечивать работу на соответствующих скоростях и соответствовать заявленным характеристикам. Нам надо понимать, что ключевое слово здесь - должно ! :)

На пути своего развития стандарт ATA преодолел много препятствий, которые были заложены именно "в железе". Сначала это было ограничение, связанное с геометрией накопителя. Стандартный PC BIOS поддерживал жестко определенное предельно возможное число головок, секторов и цилиндров из которых состоят жесткие диски (максимально адресуемый размер пространства равнялся тогда 528 мегабайтам).

Это аппаратное ограничение было преодолено введением не физической (как раньше), а логической (условной) адресации, не имеющей уже ничего общего с реальной геометрией накопителя. Появились режимы работы для "больших" дисков «Large» и его преемник - «LBA» (Logical Block Address). Это позволяло адресовать (использовать) уже 8,46 гигабайта дискового пространства.

Со временем, когда объем жестких дисков опять увеличился, было преодолено и это ограничение и планка поднялась до 32-х гигабайт, а затем (с введением 28-ми битного режима адресации) - до невиданного ранее объема в 137 гигабайт! :) Запись 28-ми битного числа, организована методом вписывания его отдельных частей в соответствующие регистры самого диска. Последние спецификации ATA поддерживали уже 48-ми битную адресацию, расширяя возможный предел адресации до 144-х петабайт (1 петабайт - 1024 терабайта).

И тут, казалось бы, когда все ограничения на объем используемых дисков были так героически преодолены выяснилось, что параллельный интерфейс ATA (в том виде, в котором он существует на данный момент) не подходит для дальнейшего развития стандарта. Попытки увеличить его пропускную способность сводятся на нет возникающими вследствие возросших скоростей наводками в кабеле. Укорачивать сам кабель? Тоже не выход из положения.

И вот тут на сцену выходит новый стандарт передачи данных - «SATA » (Serial ATA).

Это - переработанный, и улучшенный вариант предыдущего стандарта. Как Вы помните, АТА - параллельный интерфейс (Parallel), в то время как SATA - последовательный (Serial). В это время и происходит переименование отживающего свое «ATA » в «PATA » (Parallel ATA), однозначно указывая, таким образом, что это - параллельный интерфейс передачи данных.

Несмотря на то, что последовательный способ передачи медленнее, в данном случае это компенсируется возможностью работы на более высоких частотах. Отпадает необходимость в синхронизации каналов. Также сам интерфейсный кабель гораздо более помехоустойчив (все его 7 жил отдельно экранированы). Это, в свою очередь, дало возможность довести максимальную длину кабеля до одного метра.

В стандарте «SATA» Изменился также сам принцип передачи данных. Он получил название LVDS - низковольтная дифференциальная передача сигналов (англ. low-voltage differential signaling). Повышение скорости передачи и использование самосинхронизирующихся кодов позволяют отправлять больше данных по меньшему количеству проводов, чем в случае параллельной шины.

За время своего существования новая спецификация успела сменить несколько ревизий (поколений), которые характеризуются все увеличивающейся пропускной способностью интерфейса.

  • SATA-1 150 МБ/с (мегабайт в секунду)
  • SATA-2 300 МБ/с (мегабайт в секунду)
  • SATA-3 600 МБ/с (мегабайт в секунду)

Тут надо понять следующее: все эти бешеные скорости это - скорость передачи данных по интерфейсному кабелю (от контроллера, с использованием предварительного кеширования и т.д.). И какая бы большая цифра здесь не была написана, реально нас должна интересовать скорость чтения/записи непосредственно с самих пластин (блинов) жесткого диска. Ведь именно она является узким местом в его быстродействии. Другое дело, что в новых моделях реализованы более совершенные алгоритмы по работе с данными, оптимизирована работа с кеш памятью устройства и т.д.

На данный момент (в стандартных настольных конфигурациях) Вы вряд ли увидите скорость чтения с пластин, превышающую 100-120 мегабайт в секунду. Как видите, эта цифра только сейчас подошла к пределу пропускной способности старого стандарта Ultra ATA 133 (133 мегабайта в секунду). Как мы говорили выше, скорости передачи в SATA достигаются за счет другого, а все эти "300", и "600" мегабайт в секунду (три и шесть гигабит в секунду, соответственно) - работа на перспективу (), а при их чрезмерном выпячивании - бессмысленная реклама, сбивающая с толку неподготовленного пользователя.

О чем это мы? Ах, да! О преимуществах сата: надо также помнить, что каждое SATA устройство располагается на отдельном канале (контроллере), поэтому отпадает необходимость в их конфигурировании с помощью перемычек (джамперов).

Хотя, справедливости ради стоит отметить, что на ранних этапах внедрения нового стандарта на SATA жестких дисках можно было обнаружить джамперы, но они использовались редко и то лишь для принудительного перевода накопителя SATA-2 в режим SATA-1 (для совместимости с первым поколением контроллеров).

Вот так друзья, коротко мы разобрали основные понятия, связанные с интерфейсом ATA/ATAPI. Теперь смело нажимайте на ссылку "следующая", переходим к практической части материала.

Многим пользователям компьютеров не однократно встречалось слово SATA, но не многие знают, что этого такое. Стоит ли обращать на него внимание при выборе жесткого диска, системной платны или уже готового компьютера? Ведь в характеристиках данных устройств слово SATA сейчас часто упоминается.

Даем определение

SATA это последовательный интерфейс передачи данных между различными накопителями информации, который пришел на смену параллельному интерфейсу АТА.

Начало работ по созданию данного интерфейса было организованно с 2000 года.

В феврале 2000 года, по инициативе компании Intel была создана специальная рабочая группа, в которую вошли лидеры IT технологий тех и теперешних времен: компания Dell, Maxtor, Seagate, APT Technologies, Quantum и много других не менее значимых компаний.

В результате двух годичной совместной работы, первые разъемы SATA появились на системных платах в конце 2002года. Они использовались для передачи данных через сетевые устройства.

А с 2003 года последовательный интерфейс был интегрирован уже во все современные системные платы.

Чтобы визуально ощутить разницу между АТА и SATA посмотрите фото ниже.

Последовательный интерфейс Serial ATA .

Новый интерфейс на программной уровне, совместим со всеми существующими аппаратными устройствами и обеспечиваем более высокую скорость передачи данных.

Как видно из фото выше 7 контактный провод имеет меньшую толщину, что обеспечивает более удобное соединение между собой различных устройств, а также позволяет увеличить количество разъемов Serial ATA на системной плате.

В некоторых моделях материнских плат их количество может достигать аж 6.

Более низкое рабочего напряжение, меньшее количество контактов и микросхем уменьшило тепловыделение устройствами. Поэтому контроллеры портов SATA не перегреваются, а это обеспечивают еще большую надежную передачу данных.

Однако к интерфейсу Serial ATA еще проблематично подключить большинство современных дисководов, поэтому все производили современных системных плат еще не отказались от интерфейса АТА (IDE).

Кабеля и разъемы

Для полноценной передачи данных через интерфейс SATA используются два кабеля.

Один, 7 контактный, непосредственно для передачи данных, и второй, 15 контактный, силовой, для подачи дополнительного напряжения.

При этом, 15 контактный, силовой кабель подключается к блоку питания, через обычный, 4-х контактный разъем выдающий два разных напряжения, 5 и 12 В.

Силовой кабель SATA выдает рабочее напряжение 3,3, 5 и 12 В, при силе тока в 4,5 А.

Ширина кабеля 2, 4 см.

Чтобы обеспечить плавный переход от АТА к SATA, в плане подключения питания, на некоторых моделях жестких дисков еще можно увидеть старые 4-х контактные разъемы.

Но как правило, современные винчестеры уже идут только с 15 контактным новым разъемом.

Кабель передачи данных Serial ATA можно подключать к винчестеру и системной плате даже при включенных последних, что нельзя было сделать в старом интерфейсе АТА.

Это достигается за счет того, что выводы заземления в районе контактов интерфейса сделаны немного длиннее, чем сигнальные и силовые.

Поэтому при подсоединении в первую очередь контактируют провода заземления, и только потом все остальные.

Тоже самое можно сказать и про силовой 15 контактный кабель.


Таблица, силовой разъем Serial ATA .

Конфигурация SATA

Основное отличие конфигурации SATA от АТА это отсутствие специальных переключателей и фишек типа Master/Slave.

А также нет необходимости выбирать место подключения устройства к кабелю, ведь на кабеле АТА два таких места, и устройство, которое подключено в конце кабеля считается в BIOS главным.

Отсутствие настроек Master/Slave не только значительно упрощает аппаратную конфигурацию, но и позволяет более быстро устанавливать операционные системы, к примеру, .

Кстати про BIOS, настройки в нем тоже не займут много времени. Вы там быстро все найдете и настроите.

Скорость передачи данных

Скорость передачи данных это один из важных параметров, для улучшение которого и был разработан интерфейс SATA.

Но этот показатель в данном интерфейсе постоянно увеличивался и сейчас скорость передачи данных может достигать до 1969 Мбайт /с. Многое зависит от поколения интерфейса SATA, а их уже 5.

Первые поколения последовательного интерфейса, версии «0», могли передать до 50 Мбайт/с, но они не прижились, так как сразу же были заменены на SATA 1.0. скорость передачи данных которых уже тогда достигала 150 Мбайт/с.

Время появления серий SATA и их возможности.

Серии :

  1. 1.0 – время дебюта 7.01.2003 года – максимальная теоретическая скорость передачи данных 150 Мбайт/с.
  2. 2.0 – появлюсь в 2004 году, полностью совместима с версией 1.0, максимальная теоретическая скорость передачи данных 300 Мбайт/с или 3 Гбит/с.
  3. 3.0 – время дебюта июль 2008 года, начало выпуска май 2009 года. Теоретическая максимальная скорость 600 Мбайт/с или 6 Гбит/с.
  4. 3.1 – время дебюта июль 2011 года, скорость – 600 Мбайт/с или 6 Гбит/с. Более усовершенствованная версия чем в п. 3.
  5. 3.2, а также входящая в него спецификация SATA Express – время выхода 2013 год. В данной версии произошло слияние SATA и PCIe устройств. Скорость передачи данных выросла до 1969 Мбайт/с.

В данном интерфейсе передача данных осуществляется на скорости 16 Гбит/с или 1969 Мбайт/с за счет взаимодействия двух линий PCIe Express и SATA.

Интерфейс SATA Express начал внедрятся в чипсетах Intel 9-й серии и в начале 2014 года был мало еще известен.

Если не внедрятся в дебри ИТ технологий, то в двух словах можно сказать так.

Serial ATA Express, это своеобразный переходной мост, который переводит обычный режим передачи сигналов в режиме SATA на более скоростной, который возможен благодаря интерфейсу PCI Express.

eSATA

eSATA используется для подключения внешних устройств, что еще раз подтверждает универсальность интерфейса SATA.

Здесь уже используется более надежный разъемы подключения и порты.

Недостатком является то, что для работы внешнего устройства нужен отдельный специальный кабель.

Но разработчики интерфейса в скором времени решили эту проблему внедрив систему питания сразу в основной кабель в интерфейсе eSATAp.

eSATAp, это доработанный интерфейс eSATA в реализации которого была использована технология USB 2.0. Основное преимущество данного интерфейса, это передача по проводам напряжения 5 и 12 Вольт.

Соответственно встречаются eSATAp 5 V и eSATAp 12 V.

Существуют и другие названия интерфейса, все зависит от производителя. Вы можете встретить аналогичные названия: Power eSATA, Power over eSATA, eSATA USB Hybrid Port (EUHP), eSATApd и SATA/USB Combo.

Как выглядит интерфейс смотрите ниже.

Также для ноутбуков и нетбуков разработан интерфейс Mini eSATAp.

mSATA

mSATA – внедрен с сентября 2009 года. Разработан для использования в ноутбуках, нетбуков и других не больших ПК.

На фото выше, как пример, представлено два диска, один обычный SATA, он внизу. Выше диск с интерфейсом mSATA.

Кому интересно, можете ознакомится с характеристиками mSATA-накопителей.

Такие накопители установлены практически в каждом ультрабуке.

Интерфейс mSATA в обычных компьютерах применяется редко.

Переходник mSATA to Serial ATA Convertor .

Вывод

Из выше сказанного понятно, что интерфейс последовательной передачи данных SATA еще не исчерпал себя полностью.